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Abstract

The paper features the mathematical model of calculation of thermophysical properties for nanofluids on the basis of statistical
nanomechanics. Calculation of properties for nanofluids for real substances is possible by the classical and statistical mechanics. Classical
mechanics has no insight into the microstructure of the substance. Statistical mechanics, on the other hand, calculates the properties of
state on the basis of molecular motions in a space, and on the basis of the intermolecular interactions. The equations obtained by means
of classical thermomechanics are empirical and apply only in the region under observation. The main drawback of classical thermo-
mechanics is that it lacks the insight into the substance of microstructure. Contrary to classical mechanics, statistical mechanics calculates
the thermomechanic properties of state on the basis of intermolecular and intramolecular interactions between particles in the same sys-
tem of molecules. It deals with the systems composed of a very large number of particles.

The results of the analysis are compared with experimental data and show a relatively good agreement. The analytical results obtained
by statistical mechanics are compared with the experimental data and show relatively good agreement.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

One of the great scientific and technical advancement at
the end of 20th century and at the start of the 21st century
is the creation of nanomaterials and nanotechnology. The
area which cover all important problems from that field
is called in the broadest sense the mechanics. Regarding
the cross sectional diameter we can divide mechanics into
some subdisciplines [1]:

macromechanics: 10�4–10�5 m,
mesomechanics: 10�5–10�7 m,
micromechanics: 10�7–10�8 m,
nanomechanics: 10�8–10�9 m.
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Since the atomic level (interatomic distance in a crystal
lattice) has an order of one to several Å (10�10 m) the
nanolevel is restricted to 10�9 m.

Nanomechanics and micromechanics are becoming
increasingly important in today’s industry. The concepts
of invisible aircraft, pumps, etc. are now a reality. At the
same time, problems have arisen in advanced mechanics
not even dreamed of before. Thermodynamic and trans-
port properties of a gas flowing through a tube with the
diameter of a few nanometres are modelled completely dif-
ferently due to a great influence of surface effects. Even
classical hydromechanics is not of much help here. In addi-
tion to temperature and pressure the Knudsen number is
becoming increasingly important. Euler’s equation gives
bad results almost over the entire range, Navier–Stokes’
equation at Knudsen number 0.1 and Burnett’s equation
at Knudsen number 10. However, in order to analyse free
molecular flow in micro and nanochannels the nonequilib-
rium mechanics and the original Boltzmann’s equation
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Nomenclature

Cp heat capacity at constant pressure per mole
CV heat capacity at constant volume
Cel electronic heat capacity
Char lattice heat capacity
CLS Chung–Lee–Starling
CYJ revised Cotterman model
E Eliashberg coupling function
FPC fluid properties calculator
HC Hamilton–Crosser model
kB Boltzmann constant
L temperature dependent constant
lel electron mean free path
LJ Lennard-Jones
M molecular mass
N number of molecules in system
Rm universal gas constant
RHC revised Hamilton–Crosser model
RD relative deviation
RW revised Ward model
T temperature
T * reduced temperature
Tc critical temperature
vel electron speed
V volume
vc critical volume
W Ward model
Zcoll collision number

X Xuan model
b diffusion term
e Lennard-Jones parameter
g viscosity
hD Debye temperature
hE Einstein temperature
k thermal conductivity
lr relative dipole moment
j correction factor for hydrogen bonding effect
js shear viscosity
q density
q* reduced density
r Lennard-Jones parameter
re electrical conductivity
w influence of polyatomic molecules
wi molar fraction of component i
x acentric factor
X collision integral
X* reduced collision integral

Superscripts and subscripts

0 dilute gas state
c critical condition
el electron
ph phonon
p influence of high-densities
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have to be used. In this case, computation of hydrome-
chanical problems is possible over the entire range of
Knudsen, temperatures and pressures [1].

The term nanofluid is envisioned to describe a solid–
liquid mixture which consists of a nanoparticles and a base
liquid and this is one of new challenges for thermo-sciences
provided by the nanotechnology. The possible application
area of nanofluids is in advanced cooling systems, in
micro/nano-electromechanical systems. The investigation
of the effective thermal conductivity of liquid with nano-
particles attract much more interest experimentally and
theoretically. The effective thermal conductivity of nano-
particle suspension can be much higher than for the fluid
without nanoparticles.

Calculation of properties for nanofluids for real sub-
stances is possible by the classical and statistical mechanics.
Classical mechanics has no insight into the microstructure
of the substance. Statistical mechanics, on the other hand,
calculates the properties of state on the basis of molecular
motions in a space, and on the basis of the intermolecular
interactions. The equations obtained by means of classical
thermodynamics are empirical and apply only in the
region under observation. The main drawback of classical
thermodynamics is that it lacks the insight into the sub-
stance of microstructure. Contrary to classical mechanics,
statistical mechanics calculates the thermomechanic prop-
erties of state on the basis of intermolecular and intramo-
lecular interactions between particles in the same system
of molecules. It deals with the systems composed of a very
large number of particles.

In this paper we determined new constants for fluids.
The results of the analysis are compared with experimental
data, and shows a relatively good agreement.

2. Calculation of thermal conductivity

2.1. Calculation of thermal conductivity for pure fluid [2–5]

Accurate knowledge of nonequilibrium or transport
properties of pure gases and liquids, is essential for the
optimum design of the different items of chemical process
plants, for determination of intermolecular potential
energy functions and for development of accurate theories
of transport properties in dense fluids. Transport coeffi-
cients describe the process of relaxation to equilibrium
from a state perturbed by application of temperature, pres-
sure, density, velocity or composition gradients. The theo-
retical description of these phenomena constitutes that part
of nonequilibrium statistical mechanics that is known as
kinetic theory.
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In this paper, a comparative study will be presented with
respect to Chung–Lee–Starling model (CLS) [6,7]. Equa-
tions for the thermal conductivity are developed based on
kinetic gas theories and correlated with the experimental
data. The low-pressure transport properties are extended
to fluids at high-densities by introducing empirically corre-
lated, density dependent functions. These correlations use
acentric factor x, dimensionless dipole moment lr and
empirically determined association parameters to charac-
terize molecular structure effect of polyatomic molecules
j, the polar effect and the hydrogen bonding effect. In this
paper are determined new constants for fluids.

The dilute gas thermal conductivity for CLS model is
written as:

k ¼ kk þ kp; ð1Þ

where

kk ¼ k0

1

H 2

þ B6Y
� �

: ð2Þ

The thermal conductivity in the region of dilute gases
for CLS model is written as:

k0 ¼ 3119:41
g0

M

� �
w; ð3Þ

where w represents the influence of polyatomic energy con-
tributions to the thermal conductivity. We used the Tax-
man theory [2]. He solved the problem of influence of
internal degrees of freedom on the basis of WCUB theory
[8] and the approximations given by Mason and Mons-
chick [2–8]. The final expression for the influence of inter-
nal degrees of freedom is represented as:

w ¼ 1þ C�int �
0:2665þ ð0:215�1:061bÞ

Zcoll
þ 0:28288

C�
int

Zcoll

bþ 0:6366
Zcoll
þ 1:061bC�

int

Zcoll

8<
:

9=
;; ð4Þ

where C�int is the reduced internal heat capacity at constant
volume, b is diffusion term and Zcoll is the collision number.
The heat capacities are calculated by use of statistical ther-
modynamics. The paper features all important contribu-
tions (translation, rotation, internal rotation, vibration,
intermolecular potential energy and influence of electron
and nuclei excitation). The residual part kp to the thermal
conductivity can be represented with the following
equation:

kp ¼ 0:1272
T c

M

� �1=2
1

V 2=3
c

 !
B7Y 2H 2

T
T c

� �1=2

; ð5Þ

where kp is in W/m K.

H 2 ¼ B1 1� exp �B4Yð Þ½ � 1
Y
þ B2G1 expðB5Y Þ þ B3G1

� �

� 1

B1B4 þ B2 þ B3

: ð6Þ
The constants B1–B7 are linear functions of acentric factor,
reduced dipole moment and the association factor:

Bi ¼ b0ðiÞ þ b1ðiÞxþ b2ðiÞl4
r þ b3ðiÞj; i ¼ 1; 10; ð7Þ

where the coefficients b0, b1, b2 and b3 are presented in the
work of Chung et al. [6,7].

2.2. The calculation of thermal conductivity for pure solids

2.2.1. Electronic contribution to the thermal conductivity

The fundamental expression for electronic contribution
kel to the thermal conductivity can be calculated on the
basis of the theory of thermal conductivity for classical gas:

kel ¼
1

3
ncelvellel; ð8Þ

where cel is the electronic heat capacity (per electron), n is
the number of conduction electrons per volume, vel is the
electron speed and lel is the electron mean free path. In
Eq. (8) it is assumed that in temperature gradient electrons
travel just the same average distance l before transferring
their excess thermal energy to the atoms by collisions.

We can express the mean free path with help of electron
lifetime s (lel = vFs):

kel ¼
p2nk2

BT s
3m

: ð9Þ

With help of Drude theory [3] we can express thermal
conductivity as the function of electrical conductivity r:

kel ¼ rLT ; ð10Þ

where L is temperature dependent constant.

2.2.2. Photon contribution to the thermal conductivity
It is more difficult to determine the thermal conductivity

when there are nonfree electrons. Solids which obey this
rule we called nonmetallic crystals. Because the atoms in
a solid are closely coupled together, an increase in temper-
ature, will be transmitted to the other parts. In the modern
theory, heat is being considered as being transmitted by
phonons, which are the quanta of energy in each mode
of vibration. We can again use the expression:

kph ¼
1

3
Cvl: ð11Þ
2.2.3. The calculation of electronic contribution using

Eliashberg transport coupling function

In the book of Grimwall [9] we can find the analytical
expression for the electrical conductivity r:

re ¼
n2

e

mb

hsðe;~kÞi: ð12Þ

In Eq. (7) mb represents electron band mass and s is an
electron lifetime that depends both on the direction of
the wave vector~k and on the energy distance e. The brack-
ets h��i describe an average over all electron states. We can
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also describe the electronic part of thermal conductivity
with help of Eq. (12):

kel ¼
nkBT

mb

ek � EF

kBT

� �2

sðe;~kÞ
* +

: ð13Þ

The lifetime for the scattering of electrons by phonons con-
tains quantum-mechanical quantum matrix elements for
the electron–phonon interaction and statistical Bose–
Einstein and Fermi–Dirac factors for the population of
phonon and electron states. A very useful magnitude in
the context is the Eliashberg transport coupling function
a2

trF ðxÞ. A detailed theoretical expression is possibly to find
in the work of Grimwall [9]. The Eliashberg coupling func-
tion allows us to write the thermal conductivity in the next
expression:

1

kel

¼ ð4pÞ2

L0Tx2
pl

Z xmax

0

�hx=kBT
expð�hx=kBT � 1Þ½ � 1� exp ��hx=kBTð Þ½ �

� 1� 1

2p2

�hx
kBT

� �2
" #

a2
trF ðxÞ þ

3

2p2

�hx
kBT

� �2

a2
trF ðxÞ

( )
dx:

ð14Þ

We can describe the phonons by an Einstein model:

a2
trF ðxÞ ¼ Adðx� xEÞ; ð15Þ

a2F ðxÞ ¼ Bdðx� xEÞ: ð16Þ

In Eqs. (15) and (16) are B and A constants. With help of
Eqs. (15) and (16) we can solve integral in Eq. (14):

1

kel

¼ kECharðT=hEÞ
A
B
þ hE

T

� �2 1

2p2
3� A

B

� �" #
: ð17Þ

In Eq. (17) kE represents the constant, hE is the Einstein
temperature and Char represents the lattice heat capacity
in Einstein model:

Char ¼ 3NkBT
hE

T

� �2 exp hE

T

� 	
exp hE

T

� 	
� 1


 �2
: ð18Þ

Motokabbir and Grimwall [10] discussed about Eq. (17)
with A/B as a free parameter with assumption that
A/B � 1.

2.2.4. The phonon contribution to thermal conductivity

In an isotropic solid we can express the thermal conduc-
tivity as the integral over x containing the phonon density
of states F(x) [9]:

kph ¼
N
3V

v2
g

Z xmax

0

sðxÞCðxÞF ðxÞdx; ð19Þ

where vg is some average phonon group velocity, C is the
heat capacity of a single phonon mode and the ratio N/V
is the number of atoms per volume.

A relaxation time can be expressed as the ratio of a
mean free path to a velocity, so that the thermal conductiv-
ity can be expressed as:
kph ¼
N
3V

vg

Z xmax

0

lðxÞCðxÞF ðxÞdx: ð20Þ

The crucial point in Eq. (20) is the determination of relax-
ation time. If we consider scattering in and out of
state 1 we can with help of quantum mechanics describe
s(1):

1

sð1Þ ¼
2p
�h

X
2;3

jHð1; 2; 3Þj2 nð2Þnð3Þ
nð1Þ ; ð21Þ

jHð1; 2; 3Þj2 ¼ A
�h2c2X1=3

a

3MN
x1x2x3

v2
g

: ð22Þ

The evaluation of s(1) in Eq. (21) requires a summation
over modes 2 and 3. This cannot be done analytically, so
it is not possible to give a closed-form expression for the
temperature dependence of the thermal conductivity valid
at all temperatures.

For the low-temperature region where the temperature
is lower than Debye temperature hD, we have used the
solution:

kph ¼ k0 exp � hD

T

� �
; ð23Þ

where k0 is the constant.
For the high-temperature region ðT � hDÞ the solution

of Eq. (23) gives the result:

kph ¼
B

ð2pÞ3
MX1=3

a k3
Bh3

D

�h3c2T
; ð24Þ

where B is dimensionless constant, Xa is atomic volume and
c is the Grüneisen constant. The relation between the
Einstein and Debye temperature may be written as:

hE ¼ ð0:72::0:75ÞhD: ð25Þ
2.3. The calculation of thermal conductivity for
nanoparticles [11–23]

In nanoparticle fluid mixtures, other effects such as
microscopic motion of particles, particle structures and
surface properties may cause additional heat transfer in
nanofluids. Nanofluids also exhibit superior heat transfer
characteristics to conventional heat transfer fluids. One of
the main reasons is that suspended particles remarkably
increase thermal conductivity of nanofluids. The thermal
conductivity of nanofluid is strongly dependent on the
nanoparticle volume fraction. So far it has been an
unsolved problem to develop a sophisticated theory to pre-
dict thermal conductivity of nanofluids. The presented
paper is the attempt to calculate thermal conductivity of
nanofluid analytically. Hamilton and Crosser developed
the model for the effective thermal conductivity of two-
component mixtures as a function of the conductivity of
the pure materials, the composition and shape of dispersed
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particles. The thermal conductivity can be calculated then
with the next expression [11–14]:

k ¼ k0

kp þ ðn� 1Þk0 � ðn� 1Þaðk0 � kpÞ
kp þ ðn� 1Þk0 þ aðk0 � kpÞ

� �
; ð26Þ

where k is the mixture thermal conductivity, k0 is the liquid
thermal conductivity, kp is the thermal conductivity of solid
particles, a is the volume fraction and n is the empirical
shape factor given by,

n ¼ 3

w
; ð27Þ

where w is sphericity, defined as the ratio of the surface
area of a sphere (with a volume equal to that of a particle)
to the area of the particle. The volume fraction a of the par-
ticles is defined as:

a ¼ V p

V 0 þ V p

¼ n
p
6

d3
p; ð28Þ

where n is the number of the particles per unit volume and
dp is the average diameter of particles.

An alternative expression for calculating the effective
thermal conductivity of solid–liquid mixtures was intro-
duced by Wasp [15]:

k ¼ k0

kp þ 2k0 � 2a k0 � kp

� 	
kp þ 2k0 þ aðk0 � kpÞ

� �
: ð29Þ

Comparison between Eqs. (26) and (29) shows that
Wasp model is a special case with the sphericity of 1.0
of the Hamilton and Crosser model. From the litera-
ture [13–15] we can find some other models (Maxwell,
Jeffrey, Davis, Lu-Lin) with almost identical analytical
results.

The HC model gives very good results for particles lar-
ger than 13 nm. For smaller particles the presented theory
gives wrong results with the deviation more than 100% in
comparison with experimental results. The presented theo-
retical models for the calculation of the thermal conductiv-
ity for nanofluids are only dependent on the thermal
conductivity of the solid and the liquid and their relative
volume fraction, but not on particle size and the interface
between particles and the fluid. For the calculation of effec-
tive thermal conductivity we have used Xue theory [16],
based on Maxwell theory and average polarization theory.
Because the interfacial shells are existed between the nano-
particles and the liquid matrix, we can regard both the
interfacial shell and the nanoparticle as a complex nano-
particle. So the nanofluid system should be regarded as
the complex nanoparticles dispersed in the fluid. We
assume that k is the effective thermal conductivity of the
nanofluid, kc and km are the thermal conductivity of the
complex nanoparticles and the fluid, respectively. The final
expression of Xue model (X) is expressed with the next
equation:
9 1� a
kr

� �
k� k0

2kþ k0

þ a
kr

k� kc;x

kþ B2;x kc;x � keð Þ þ 4
k� kc;y

2kþ ð1� B2;xÞðkc;y � kÞ

� 
¼ 0;

ð30Þ

kc;j ¼ k1

ð1� B2;jÞk1 þ B2;jk2 þ ð1� B2;jÞkrðk2 � k1Þ
ð1� B2;jÞk1 þ B2;jk2 � B2;jkrðk2 � k1Þ

: ð31Þ

We assume that the complex nanoparticle is composed of
an elliptical nanoparticle with thermal conductivity k2 with
halfradii of (a,b,c) and an elliptical shell of thermal conduc-
tivity k1 with a thickness of t. In Eqs. (30) and (31) kr repre-
sents the spatial average of heat flux component. For
simplicity we assume that all fluid particles are balls and
all the nanoparticles are the same rotational ellipsoid.

We have used the model of Yu and Choi [21] that the
nanolayer of each particle could be combined with the par-
ticle to form an equivalent particle and that the particle
volume concentration is so low that there is no overlap
of those equivalent particles. On this basis we can express
the effective volume fraction:

ae ¼ a 1þ h
r

� �3

; ð32Þ

where h represents the liquid layer thickness. We have also
made the assumption that equivalent thermal conductivity
of the equivalent particles has the same value as the ther-
mal conductivity of particle. On the basis of all the pre-
sented assumptions we have derived the new model
(RHC) for thermal conductivity for nanofluids:

k ¼ kf 1
kpt þ ðn� 1Þkf � ðn� 1Þaeðkf � kptÞ

kpt þ ðn� 1Þkf þ aeðkf � kptÞ

� �
: ð33Þ
3. Calculation of viscosity

3.1. Calculation of viscosity for pure fluid

In the presented paper will be presented Chung–Lee–
Starling model (CLS) [6,7]. Equations for the viscosity
and the thermal conductivity are developed based on
kinetic gas theories and correlated with the experimental
data. The low-pressure transport properties are extended
to fluids at high-densities by introducing empirically
correlated, density dependent functions. These correlations
use acentric factor x, dimensionless dipole moment lr

and an empirically determined association parameters to
characterize molecular structure effect of polyatomic mole-
cules j, the polar effect and the hydrogen bonding effect. In
this paper are determined new constants for fluids.

The dilute gas viscosity in our model is obtained analyt-
ically [8] with the exception of correction factor:

g0ðT Þ ¼ 26:69579 � 10�1

ffiffiffiffiffiffiffiffi
MT
p

Xð2;2Þ � r2
F c; ð34Þ
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where g is in Pa s, M is the molecular mass in g mol�1, T is
in K, Xð2;2Þ is a collision integral and r is the Lennard-Jones
parameter. The factor Fc has been empirically found to be
[6,7]:

F c ¼ 1� 0:2756xþ 0:059035l4
r þ j; ð35Þ

where x is the acentric factor, lr relative dipole moment
and j is a correction factor for hydrogen-bonding effect
of associating substances such as alcohols, ethers, acids
and water. For dense fluids Eq. (34) is extended to account
for the effects of temperature and pressure by developing
an empirically correlated function of density and tempera-
ture as shown below:

g ¼ gk þ gp; ð36Þ

gk ¼ g0

1

G2

þ A6Y
� �

; ð37Þ

gp ¼ 36:344 � 10�6 � ðMT cÞ0:5=V 2=3
C t

h i
A7Y 2

� G2 exp A8 þ A9=T � þ A10=T �2
� 	

; ð38Þ

Y ¼ qV c=6; G1 ¼
1:0� 0:5Y

ð1:0� Y Þ3
; ð39Þ

T c ¼
1:2593e

k
; V c ¼ ð0:809rð _AÞÞ3; ð40Þ

G2 ¼
fA1ð1� expð�A4Y ÞÞ þ A2G1 expðA5Y Þ þ A3G1g

ðA1A4 þ A2 þ A3Þ
:

ð41Þ

The constants A1–A10 are linear functions of acentric fac-
tor, reduced dipole moment and the association factor

Ai ¼ a0ðiÞ þ a1ðiÞxþ a2ðiÞl4
r þ a3ðiÞj; with i ¼ 1; 10;

ð42Þ

where the coefficients a0, a1, a2 and a3 are presented in the
work of Xuan and Roetzel [14].
3.2. The calculation of effective viscosity for nanofluids

It is well known that the earliest theoretical work on the
effective viscosity was due to Einstein whose derivation led
to the effective viscosity to be linearly related to the particle
concentration [17]:

gr ¼ 1þ 2:5a; ð43Þ

where gr is the relative viscosity defined as the ratio of the
effective viscosity of the particle fluid-mixture to the viscos-
ity of the fluid and a is the volumetric concentration of the
particles. Eq. (43) is applicable to suspensions with low-
particle concentrations (less then 2%). With help of expo-
nential model we can obtain the Cheng–Law [19] expres-
sion for the relative viscosity:

gr ¼ 1þ 2:5aþ 35

8
þ 5

4
b

� �
a2 þ 105

16
þ 35

8
bþ 5

12
b2

� �
a3

þ 1155

128
þ 935

96
bþ 235

96
b2 þ 5

48
b3

� �
a4 þ � � � ; ð44Þ
where b is called the exponent. If we choose b = 2, we ob-
tain the result is very close to the result obtained by Ward
(W), who suggested the following expression for spherical
particles:

gr ¼ 1þ ð2:5aÞ þ ð2:5aÞ2 þ ð2:5aÞ3 þ ð2:5aÞ4 þ � � � : ð45Þ

The presented equation is fitted with the experimental
data for the concentration up to 35%.

The viscosity of nanofluid is strongly dependent on the
nanoparticle volume fraction. So far it has been an
unsolved problem to develop a sophisticated theory to pre-
dict viscosity of nanofluids. The presented paper is the
attempt how to calculate thermal conductivity of nanofluid
analytically. Cheng and Law [19] developed the model for
the effective thermal conductivity of two-component mix-
tures as a function of the viscosity of the pure fluid and
the composition of particles and exponent factor.

The Cheng and Law or Ward models give very good
results for two-phase flow with particles larger than
100 nm. For smaller particles the presented theory give
wrong results with the deviation more than 100% in com-
parison with experimental results. The presented theoreti-
cal models for the calculation of the viscosity for
nanofluids are only dependent on the viscosity of the liquid
and their relative volume fraction, but not on particle size
and the interaction between particles and the fluid.

In convection heat transfer in nanofluids not only on the
thermal conductivity but also on the other properties such
as specific heat, dynamic viscosity, etc., are important for
analytical prediction. We can mention the factors discussed
in the literature [17–27] as possible mechanisms for the
anomalous enhancement of viscosity: the motion of nano-
particle, molecular level layering of the liquid at the liquid-
particle interface and ballistic phenomena in nanoparticles,
the effects of clustering in nanoparticles.

As in the case of analytical calculation of thermal con-
ductivity, for the calculation of viscosity of nanofluids we
have made the hypothesis that the most important addi-
tional contribution is liquid layering. With help of Eq.
(43) we can express the renewed Ward model (RW):

gr ¼ 1þ ð2:5aeÞ þ ð2:5aeÞ2 þ ð2:5aeÞ3 þ ð2:5aeÞ4 þ � � � :
ð46Þ

Figs. 2 and 3 show the comparison between experimen-
tal results for the mixture water + TiO2, water + Al2O3 and
analytical results. The mean diameter of TiO2 particles is
27 nm and Al2O3 particles is 13 nm. The deviation of
results between W (Eq. (45)) and RW model Eq. (46) and
experimental results is extremely high. The renewed Ward
model (RW) gives excellent results.
4. The calculation of thermodynamic properties for pure fluid

To calculate thermodynamic functions of state we
applied the canonical partition [24,25]. Utilising the semi-
classical formulation for the purpose of the canonical
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ensemble for the N indistinguishable molecules the parti-
tion function Z can be expressed as follows [2]:

Z ¼ 1

N !hNf

Z
� � �
Z

exp � H
kT

� �
� d~r1d~r2 � d~rNd~p1d~p2 � d~pN;

ð47Þ

where f stands for the number of degrees of freedom of
individual molecule, H designates the Hamiltonian mole-
cule system, vectors ~r1;~r2 � � �~rN � � � describe the positions
of N molecules and~p1;~p2 � � �~pN momenta, k is Boltzmann’s
constant and h is Planck’s constant. The canonical ensem-
ble of partition function for the system of N molecules can
be expressed like this:

Z ¼ Z0 Ztrans Zvib Zrot Z ir Zel Znuc Zconf : ð48Þ

Thus the partition function Z is a product of terms of the
ground state (0), the translation (trans), the vibration (vib),
the rotation (rot), the internal rotation (ir), the influence of
electrons excitation (el), the influence of nuclei excitation
(nuc) and the influence of the intermolecular potential en-
ergy (conf).

Utilising the canonical theory for computating the ther-
modynamic functions of the state can be put as follows
[5,6]:

Pressure p ¼ kT
o ln Z
oV

� �
T

;

Internal energy U ¼ kT 2 o ln Z
oT

� �
V

;

Free energy A ¼ �kT � ln Z;

Entropy S ¼ k ln Z þ T
o ln Z
oT

� �
V

� 
;

Free enthalpy G ¼ �kT ln Z � V
o ln Z
oT

� �
V

� 
;

Enthalpy H ¼ kT T
o ln Z
oT

� �
V

þ V
o ln Z
oV

� �
T

� 
;

ð49Þ

where T is temperature and V is volume of molecular
system. The computation of the individual terms of the
partition function and their derivatives except of the con-
figurational integral is dealt with in the works of Lucas
[24].
4.1. Revised Cotterman model (CYJ) [26]

Revisited Cotterman EOS is based on the hard sphere
perturbation theory. The average relative deviation for
pressure and internal energy in comparison with Monte-
Carlo simulations are 2.17% and 2.62% respectively for
368 data points [9]. The configurational free energy is given
by:

Aconf ¼ Ahs þ Apert; ð50Þ
Ahs

RmT
¼ 4g� 3g2

ð1� gÞ2
; ð51Þ
Apert ¼ Að1Þ

T �
þ Að2Þ

T �2
; ð52Þ

Að1Þ

RmT
¼
X4

m¼1

A1m

g
s

� �m
;

Að2Þ

RmT
¼
X4

m¼1

A2m
g
s

� �m
; ð53Þ

s ¼ 0:7405; g ¼ pqD3

6
; ð54Þ

where g is packing factor, D is hard-sphere diameter.
With help of configurational free energy we can calcu-

late all configurational thermodynamic properties. Expres-
sions for calculation of configurational entropy and
internal energy are shown in literature [9]. We carried out
all other expressions for calculation of thermophysical
properties.
5. The calculation of thermodynamic properties for pure

solids

Our thermodynamic system consists of N particles asso-
ciated by attractive forces. Atoms in a crystal lattice are not
motionless but they constantly thermally oscillate around
their positions of equilibrium. At temperatures far below
the melting point the motion of atoms is approximately
harmonic [4,9]. This assembly of atoms has 3N � 6 vibra-
tion degrees of freedom. Ignore 6 vibration degrees of free-
dom and mark the number of vibration degrees of freedom
with 3N.

Through the knowledge of independent harmonic oscil-
lators the distribution function Z can be derived as follows:

Z ¼
exp � hm

2kBT

� �
1� exp � hm

kBT

� �
2
4

3
5

3N

: ð55Þ

In Eq. (20) m is the oscillation frequency of the crystal. The
term hm/k is the Einstein temperature.

In comparing the experimental data for simple crystals a
relatively good matching with analytical calculations at
higher temperatures is observed whereas at lower tempera-
tures the discrepancies are higher. This is why Debye cor-
rected the Einstein’s model by taking account of the
interactions between a number of quantized oscillators.
The Debye approximation treats a solid as an isotropic
elastic substance. Using the canonical distribution the par-
tition function [11] may be written as:

ln Z ¼ � 9

8
N

hD

T
� 3N � ln 1� exp � hD

T

� �� �

þ 3N
T 3

h3
D

Z hD=T

0

n3

expðnÞ � 1
dn: ð56Þ

In Eq. (52) hD is the Debye temperature: hD ¼ mmaxh
k . By

developing the third term in Eq. (56) into a series for a
higher temperature range [2] we can write:

n3

expðnÞ � 1
¼ n2 � 1

2
n3 þ 1

12
n4 � 1

720
n6 þ � � � : ð57Þ
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Using Eq. (53) and (52) turns into the following
expression:

ln Z ¼ � 9

8
N

hD

T
� 3N � ln 1� exp � hD

T

� �� �

þ 3N
T
hD

� �3
1

3

hD

T

� �3

� 1

8

hD

T

� �4

þ 1

60

hD

T

� �5
"

� 1

5040

hD

T

� �7

þ 1

272160

hD

T

� �9

� � � �
#
: ð58Þ

The relation between the Einstein and Debye tempera-
ture may be written as [12–15]:

hE ¼ ð0:72 � � � 0:75ÞhD: ð59Þ
The Debye characteristic temperature was determined

by means of the Grüneisen independent constant c:

h ¼ CV �c; ð60Þ
where C is constant dependent on material.

We developed a mathematical model for the calculation
of thermodynamic properties of polyatomic crystals. The
derivations of the Einstein and Debye equations, outlined
in the previous paragraphs, apply specifically to mono-
atomic solids, i.e., those belonging to the cubic system.
However, experiments have shown that the Debye equa-
tion represents the values of specific heat and other thermo-
physical properties for certain other monoatomic solids,
such as zinc, which crystallizes in the hexagonal system.
Suppose that the crystal contains N molecules, each com-
posed of s atoms. Since there are Ns atoms, the crystal as
a whole has 3Ns vibrational modes. A reasonable approx-
imation is obtained by classifying the vibration into:

(a) 3N lattice vibrations, which are the normal modes
discussed in the Debye treatment (acoustical modes).

(b) Independent vibrations of individual molecules in
which bond angles and lengths may vary. There must
be 3N(s � 1) of these (optical modes). We expressed
the optical modes using the Einstein model.
5.1. Electronic gas in metals

We are interested in electrons capable of moving in a
crystal and not belonging to any individual atoms but
entirely to the crystal. Such are, for example, conduction
electrons in metals. A number of such electrons may be
called electronic gas. Using the Fermi–Dirac statistics the
configuration integral [4] may then be calculated for tem-
peratures lower than the Fermi temperature:

T F ¼
eF

kB

: ð61Þ

For metals the Fermi temperature is a few thousand
Kelvins. In Eq. (26) eF is Fermi energy.

Ael ¼
3

5
NeF 1þ 5p2

12

kBT
eF

� �2
 !

� NkB

p2

2

kBT 2

eF

: ð62Þ
The analytical calculation of configuration integral in
solids is a very difficult task. Most frequently numerical
procedures are applied in practical computations by means
of the Monte-Carlo method [11]. Nevertheless, the pre-
sented method requires a lot of computer time with another
serious drawback being also that it does not provide a
functional dependence of thermodynamic properties on
temperature and volume. Empirical equations [6] are fre-
quently used as well, though mostly without any theoretical
basis built on a molecular view of the world. In the paper
presented we used the perturbation VDW theory for solids
around the model of hard spheres [4] to calculate the ther-
modynamic properties of state. In order to calculate the
mixtures of atoms of hard spheres we obtain the configura-
tion free energy for a certain binary crystal:

Aconf0 ¼ NkBT � �3 ln
V � � 1

V �

� ��

þ 5:124 � ln V � � 20:78V � þ 9:52V �2 � 1:98V �
3

þC0 þ w1 � ln w1 þ w2 � ln w2Þ;

C0 ¼ 15:022; V � ¼ V
V 0

; V 0 ¼
Nr3ffiffiffi

2
p : ð63Þ

In case of a crystal formed of atoms of the same type
free energy can be written as:

Aconf0 ¼ NkBT �3 ln
V � � 1

V �

� �
þ 5:124 � ln V � � 20:78V �

�

þ 9:52V �2 � 1:98V �3 þ C0

�
: ð64Þ

To calculate the perturbation contribution the VDW
model was used. In most of the technical literature [4] the
VDW model is treated only in relation to atomic structure,
whereas we additionally presented the temperature-depen-
dent coefficients.

Aconf1 ¼ �
aðw1;w2; T Þ

V
: ð65Þ

The configuration integral is thus formed by the contri-
bution of hard spheres and perturbation:

Aconf ¼ Aconf0 þ Aconf1: ð66Þ

In our case coefficient a was determined as a tempera-
ture-dependent polynome following a comparison between
experimental data and analytical results:

a ¼ a0 þ a1T þ a2T 2: ð67Þ

Coefficients a0, a1, a2 are obtained by numerical approxi-
mation and the comparison with thermodynamic data.

6. Thermodynamic properties for nanofluids

The third main parameter involved in calculating heat
transfer rate of the nanofluid is heat capacity. For the
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synthesized nanoparticle-fluid suspension we can predict
the thermodynamic properties with the next expression:

ðqcpÞnf ¼ ð1� /ÞðqcpÞf þ /ðqcpÞp; ð68Þ

where q is a density of nanofluid:

q ¼ ð1� uÞqf þ uqp: ð69Þ
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6.1. Results and comparison with experimental data

In the present paper, we will show analytical computa-
tions for the mixture between copper nanoparticles, alu-
minium oxide nanoparticles and athylene glycol. The
copper nanoparticles dispersed in the fluid are very inter-
esting for nanofluid industrial application due to very
high-thermal conductivity in comparison with copper or
aluminium oxides. In our case we have used experimental
results from the literature [15] where copper average nano-
particles diameter are smaller than 10 nm. For Al2O3 nano-
particles authors Eastman et al. reported [15] that the
average diameter is 35 nm.

Figs. 1, 2 and 5 show the comparison between analytical
data and experimental data [2,27] for pure substances.
Fig. 3 shows the comparison between analytical calculation
(CLS model) and results obtained by fluid properties calcu-
lator (FPC). FPC model is installed on the internet http://
www. mhtl.uwaterloo.ca/old/onlinetools/airprop/airprop.
html. We have compared for copper our analytical results
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also with experimental data and comparison shows rela-
tively good agreement. Fig. 5 shows the comparison
between analytical calculation (CYJ model) and REF-
PROP 7.1 model for air [28] (see Fig. 4).

The comparison shows very good agreement. Figs. 6
and 7 show the analytical calculation of mixture between
ethylene glycol and copper and aluminium oxide (Al2O3)
nanoparticles for thermal conductivity ratio. The results
for thermal conductivity obtained by X and RHC model
show relatively very good agreement in comparison with
experimental results. Thermal conductivity predicted by
HC model give much lower values as experimental results.
Figs. 8 and 9 show the comparison between experimental
results for the mixture water + TiO2, water + Al2O3 and

http://www.mhtl.uwaterloo.ca/old/onlinetools/airprop/airprop.html
http://www.mhtl.uwaterloo.ca/old/onlinetools/airprop/airprop.html
http://www.mhtl.uwaterloo.ca/old/onlinetools/airprop/airprop.html
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analytical results. The mean diameter of TiO2 particles is
27 nm and Al2O3 particles is 13 nm. The deviation of
results between W (Eq. (45)) and RW model (Eq. (46))
and experimental results is extremely high. The renewed
Ward model (RW) gives excellent results. Fig. 10 shows
the calculation for isobaric molar heat for copper nanopar-
ticles + air. Fig. 10 shows that for equilibrium thermome-
chanical properties of state is almost no enhancement
with variation of volume concentration of nanoparticles.
Model 1 is based on fundamental Eq. (69) and model 2
in Fig. 10 is based on Eq. (69) and improved with
Eq. (32). Both models show almost the same analytical
results.

7. Conclusion and summary

The paper presents the mathematical model for compu-
tation of thermodynamic and transport properties for
nanofluids. The analytical results are compared with
the experimental data and they show relatively good
agreement.
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